POLE NGS Testing guidance
All endometrial carcinomas regardless of histological type

BIOPSY:
- MMR
- p53
- ER

IHC on all cases

GROUP 1:
- MMR abnormal
- p53 abnormal

POLE NGS testing RECOMMENDED

GROUP 2:
- Low-grade (G1/G2); Endometrioid; Stage IA; no/focal LVSI; ER positive

POLE NGS testing NOT RECOMMENDED

GROUP 3:
- Stage I/II Non-endometrioid
- G3 endometrioid, stage IA with no/focal LVSI
- Endometrioid with any of the following:
 - ER-negative
 - Stage IA with substantial LVSI
 - Stage IB/II

POLE NGS testing RECOMMENDED

GROUP 4:
- Stage III/IV or locally advanced EC

POLE NGS testing only if recommended by MDT

References:
1. Authors: Naveena Singh, Amy Jamieson, Jo Morrison, Alexandra Taylor, Raji Ganesan.
2. Barts Health NHS Trust, London, UK; Vancouver General Hospital, Vancouver, Canada; Musgrove Park Hospital, Taunton, UK; Royal Marsden Hospital, London, UK; Birmingham Women’s Hospital, Birmingham, UK.

BAGP POLE NGS testing guidance, v1.1, dated 8 April 2022.
BAGP guidance on **POLE NGS testing in endometrial carcinoma**

GLOSSARY:

EC: Endometrial carcinoma

G1/G2/G3/low-grade/high-grade: FIGO grades of endometrioid carcinoma; note that this grading system does not apply to non-endometrioid histotypes which are broadly classified as ‘high-grade’

Histotype: Histological type of EC categorised on morphological features as defined by the WHO

IHC: Immunohistochemistry

LVSI: Lymphovascular space invasion

MMR: Mismatch repair

NGS: Next Generation Sequencing

NSMP: No Specific Molecular Profile, i.e. EC that no not show MMR, p53 or POLE defects

POLE: DNA polymerase epsilon

Stage: FIGO or TNM staging of EC

Note 1: POLE NGS testing in endometrial carcinoma

Molecular testing in endometrial carcinoma, including mutational analysis for POLE, is recommended by the World Health Organisation wherever resources permit. POLE NGS testing will soon be available for NHS patients via national genomics services within the UK. This requires considerable resources and additional work for laboratories in sample preparation and transport, sample analysis and provision of an integrated report. This algorithm is provided to limit POLE testing to those cases where it is essential for patient care. This is meant to be a guideline and it is appreciated that centres may follow local policy on the extent of testing and opt to further minimise and restrict testing to only those cases where the POLE result alters decisions regarding adjuvant treatment, or at the other extreme, move to universal testing of all cases. Interpretation of POLE results should be based on published data: 11 mutations have been established as being pathogenic, with the variants in bold accounting for the majority of cases: \(\text{P286R (c.857C>G), V411L (c.1231G>T/C), S297F (c.890C>T),} \)
S459F (c.1376C>T), A456P (c.1366G>C), F367S (c.1100T>C) L424I (c.1270C>A), M295R (c.884T>G), P436R (c.1307C>G), M444K (c.1331T>A) and D368Y (c.1102G>T).

Non-pathogenic variants and guidance for determining the pathogenicity of additional variants has also been put forward.

Note 2: Testing of all endometrial carcinoma biopsies regardless of histotype

Following the discovery of the four molecular subtypes of endometrial cancer (EC) by The Cancer Genome Atlas (TCGA) in 2013, the Proactive Molecular Risk Classifier for Endometrial Cancer (ProMisE) was developed and validated for clinical use. This uses a combination of targeted sequencing for pathogenic POLE exonuclease domain mutations and immunohistochemistry (IHC) to determine MMR and p53 status, to assign EC to one of four molecular subtypes; POLEmut, MMRd, p53abn, and NSMP (no specific molecular profile). Molecular classification of EC has since been shown to have a stronger prognostic significance than conventional histological classification. Historically, the EC risk stratification used to guide treatment has largely been based on histological type, grade, and stage. Both histotype and grade assignment have been shown to be poorly reproducible, even amongst expert pathologists, with no agreement in histotype diagnosis in up to one third of cases. In contrast, EC molecular classification has been shown to be highly reproducible and can be accurately performed on endometrial biopsies, with high concordance between biopsy and final hysterectomy specimen. The 2020 5th edition of the WHO Female Genital Tumours recommends the integration of molecular classification into standard EC pathology reporting. While the assessment of MMR and p53 IHC are widely available, cost and access to POLE testing currently presents a major barrier to widespread adoption. This algorithm presents a way of restricted use of POLE testing to patients whom POLE status would impact on treatment decisions.

Note 3: MMR IHC should be performed on all endometrial cancers

As recommended by NICE in October 2020 (Diagnostics guidance DG42 available at: Overview | Testing strategies for Lynch syndrome in people with endometrial cancer | Guidance | NICE), all patients diagnosed with EC should have screening for Lynch syndrome. The initial step is four-panel IHC testing for MMR deficiency (MLH1, MSH2, MSH6 and PMS2). If the IHC is abnormal, with loss of MLH1 +/- PMS2, MLH1 promoter hypermethylation testing on tumour DNA should be performed to differentiate sporadic and Lynch syndrome-associated cancers. If loss of MSH2, MHS6, or isolated PMS2 is found on IHC, germline testing for Lynch syndrome is recommended. Identification of mismatch repair deficient (MMRd) EC also has important therapeutic implications. Defects in mismatch repair lead to a high mutational burden, an abundance of neoantigens and profound immune response, making these ECs an ideal target for immune checkpoint blockade (ICB) therapy. The 2017 FDA approval for ICB therapy in MMRd solid tumours has been followed by multiple single agent EC clinical trials with PD-1 and PD-L1 inhibitors showing response rates of 49-57% and 27-43%, respectively, in MMRd advanced, metastatic or recurrent ECs.
Note 4: p53 IHC should be performed on all endometrial cancers

p53abn EC represent the most aggressive molecular subtype, and account for majority of EC mortality\(^1\). The ECs in this molecular subtype were characterised by TCGA as having a very high number of somatic copy number alterations, low mutation rate, and ubiquitous TP53 mutations\(^3\). These tumours are now identified by a more pragmatic method of mutant-pattern p53 IHC staining, which has been shown to be an excellent surrogate maker for TP53 mutational status as determined by sequencing in EC biopsies\(^5\). Recent evidence has shown the p53abn molecular subtype is found in up to 5-10% of grade 1 and 2 endometrioid ECs\(^16\,\,18\,\,20\). The 2020 ESGO/ESTRO/ESP guidelines classify any stage p53abn EC with myoinvasion, regardless of the grade or histotype, as high-risk disease, with a recommendation for adjuvant chemotherapy +/- radiation\(^21\). The value of carrying out universal p53 IHC is to avoid missing cases of serous carcinoma that may mimic endometrioid carcinoma, as well as identifying the infrequent p53abn EC cases that show endometrioid grade 1 or grade 2 histology.

Note 5: ER IHC should be performed on all endometrial cancers

The category of NSMP EC is one of exclusion, namely all those EC that do not harbour mismatch repair defects or pathogenic POLE or TP53 mutations. This is a large and heterogeneous group that accounts for about 50% of all EC. Studies on biomarkers of poor outcome in this category have thus far been inconclusive, however, ER status and presence of LVSI. The value of universal ER testing is to indicate the possibility rarer histotypes of EC that may closely mimic endometrioid EC, such as clear cell, mesonephric-like and gastrointestinal-type mucinous EC; these are negative for ER, in contrast to the generally strong positivity typical of endometrioid EC. In addition, knowledge of ER status may help to inform decisions on hormonal treatment including hormone replacement therapy. Most importantly, ER status has been demonstrated to correlate with recurrence-free survival in NSMP EC\(^22\); notably in this analysis a cut-off of 10% was applied and thereby flat negative or very focal ER expression should alert the pathologist to the possibility of a non-endometrioid histotype or potential for aggressive behaviour in an endometrioid tumour.

Note 6: Interpretation of MMR IHC

MMR status should be reported as normal or abnormal, with an appropriate message relating to the likelihood of Lynch Syndrome and thereby recommendation for referral to clinical genetics services. MMR IHC interpretation and reporting terminology have been the subject of previous BAGP guidance\(^23\).
Note 7: Interpretation of p53 IHC

IHC results of p53 should be reported as normal or abnormal (aberrant or mutation-type are appropriate alternatives). Reporting as ‘positive’ or ‘negative’ should be avoided. Pathologists should be familiar with the abnormal staining patterns: over-expression, complete absence (also known as ‘null’), cytoplasmic and subclonal, as distinct from normal or ‘wild-type’ p53 expression. This has been the subject of previous BAGP guidance, an online teaching resource for p53 interpretation in EC (Interpretation of p53 Immunostaining in Endometrial Carcinoma (ubc.ca)) and detailed reviews.

Note 8: POLE testing in the presence of abnormal MMR and/or p53 IHC

Given the high mutational burden observed in POLEmut and MMRd tumours, secondary TP53 mutations/p53 IHC abnormalities can be found. Leon-Castillo et al reported on the approximately 3-5% of ECs that have more than one molecular feature, called ‘multiple classifiers’. They demonstrated that MMRd-p53abn tumours have morphology, molecular profiles and clinical behaviour aligning with MMRd EC, and the POLEmut-p53abn EC have morphology, molecular profiles and clinical behaviour aligning with POLEmut EC. These findings suggest the TP53 mutation is a later event during tumour progression in POLEmut and MMRd tumours and does not affect the clinical outcome. This also highlights the importance of interpreting p53 and MMR IHC in the context of POLE mutation status to avoid overtreatment in these patients with ‘multiple classifiers’. The 2020 ESGO/ESTRO/ESP guidelines for the management of patients with EC classify stage I-II POLEmut EC as low-risk and omission of adjuvant therapy should be considered.

Note 9: Surgical staging including hysterectomy

FIGO staging for EC is surgical. Standard surgery consists of a total hysterectomy and bilateral salpingo-oophorectomy, and there is high level evidence supporting a minimally invasive surgical approach. Sentinel lymph node biopsy has been shown to have a high diagnostic accuracy in EC, and is now recommended to be performed over full lymphadenectomy. Indications for nodal assessment in EC varies significantly between centres. The British Gynaecological Cancer Society (BGSC) recommends that surgical staging, including sentinel lymph node biopsy and omental biopsy, may be appropriate for women with disease greater than low risk. For patients with known stage II EC, total hysterectomy and bilateral salpingo-oophorectomy is still recommended, and radical hysterectomy should only be performed if required to obtain tumour free margins. Further in-depth discussion regarding surgical staging in EC is beyond the scope of this document.

Note 10: Lymphovascular space invasion (LVI) in EC

Lymphovascular space invasion (LVI) is an established prognostic indicator in endometrial carcinoma and influences ESGO-ESTRO-ESP risk categorisation. A binary distinction between no or focal LVI as opposed to extensive/substantial LVI is recommended but the cut-off has varied: previous recommendations by the International Society of Gynecological Pathologists defined ‘extensive’ LVI as...
as the presence of three or more vessels containing tumour, while the 2020 WHO Classification and ESGO-ESTRO-ESP guidelines state the presence 5 or more involved vessels being definitional for extensive/substantial LVSI. The International Collaboration on Cancer Reporting dataset recommends: “Although there have been different proposals for what constitutes extensive LVI, it is a good rule of thumb to diagnose extensive LVI when it is easily recognisable at scanning magnification (and artefact is excluded) and when present in three or more vessels on closer inspection”.

Note 11: No POLE testing is indicated for low grade (grade 1 or 2) endometrioid, stage IA, no LVSI, and normal MMR and p53 IHC

Talhouk et al recently validated an amended ProMisE testing protocol where p53 and MMR IHC were performed on all cases with omission of POLE sequencing in ‘very low-risk’ EC. These were defined as cases fulfilling all of the following: grade1/2, MMR-proficient, p53 wild-type, endometrioid histology, stage IA, no LVSI. The rationale for omitting POLE testing in this ‘very low-risk’ subgroup is because the clinical outcomes are excellent, with no adjuvant therapy required, thus POLE status would not alter management of these patients. In this validation series they did confirm this ‘very low-risk’ EC cohort with unknown POLE mutational status had excellent clinical outcomes, comparable to that of ECs known to have pathogenic mutations in POLE.

Note 12: POLE testing is recommended in Stage I-II non-endometrioid EC or any grade endometrioid stage IA with LVSI or stage IB/stage II regardless of LVSI

The majority of POLEmut ECs are endometrioid, and despite many having high-risk features, such as high-grade and LVSI, this molecular subtype has exceptionally favourable survival outcomes. A recent meta-analysis which included 294 patients with pathogenic POLE mutations showed that the excellent survival outcomes of stage I/II POLEmut EC was independent of adjuvant treatment received. There are two clinical trials currently assessing the safety of de-escalation of adjuvant treatment in POLEmut EC (PORTEC-4a and TAPER- Tailored adjuvant therapy in POLE-mutated and p53-wildtype early stage endometrial cancer) and a third will be commencing shortly (the TransPORTEC RAINBO Blue-POLE arm). The 2020 ESGO/ESTRO/ESP guidelines classify stage I-II POLEmut EC as low risk and state that in women with Stage I-II pathogenic POLEmut ECs, omission of adjuvant therapy should be considered. We therefore recommend testing POLE status in patients where the recommended adjuvant therapy would change if a pathogenic POLE mutation is found:

- Stage I-II non-endometrioid ECs
- Any grade endometrioid stage IA with LVSI, grade 3 endometrioid stage IA with no/focal LVSI, or any grade endometrioid stage IB/stage II regardless of LVSI

Identification of pathogenic POLE mutations in these patients will allow discussion of de-escalation of adjuvant therapy and/or identify patients eligible for de-escalation clinical trials and these patients may be spared the toxicity and cost of unnecessary radiation treatment +/- chemotherapy.
Note 13: POLE testing is not indicated in Stage III-IV EC unless directed by MDT and/or patient choice

There is currently insufficient evidence to guide adjuvant treatment of advanced stage (III-IV) POLEmut EC. Furthermore, the 2020 EGSO/ESTRO/ESP EC treatment recommendations for stage III-IV EC are the same regardless of molecular subtype, therefore POLE status would not currently alter management in these patients.

References

17. Singh N, Piskorz AM, Bosse T, et al. p53 immunohistochemistry is an accurate surrogate for TP53

BAGP POLE NGS testing guidance, v1.1, dated 8 April 2022
Authors: Naveena Singh1,2, Amy Jamieson3, Jo Morrison4, Alexandra Taylor4, Raji Ganesan5
1Barts Health NHS Trust, London, UK; 2Vancouver General Hospital, Vancouver, Canada; 3Musgrove Park Hospital, Taunton, UK; 4Royal Marsden Hospital, London, UK; 5Birmingham Women’s Hospital, Birmingham, UK